If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-22w+119=0
a = 1; b = -22; c = +119;
Δ = b2-4ac
Δ = -222-4·1·119
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{2}}{2*1}=\frac{22-2\sqrt{2}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{2}}{2*1}=\frac{22+2\sqrt{2}}{2} $
| 10j-30=40 | | w^2-22w+117=0 | | w^2-22w+177=0 | | (5x-17)+(x+17)+(2x-4)=180 | | 5,5x+16,2=10,3x+4,2 | | C=0.2t+12 | | -10=5(n-10) | | 26.6=0.2×t | | w^2-22w+120=0 | | -6h-14=22 | | 26.60=0.2t+12 | | 2x=26=10x-54 | | )5x-17)+(x+17)+(2x-4)=180 | | 2b-2=16 | | 7x+2=2x+17=23 | | W=-5+7i | | (5x-17)+(x-17)+(2x-4)=180 | | 7x+2=2x+1723 | | 70=10(h+5) | | (5x-17)+(x-17)+(2x+4)=180 | | (5x+17)+(x-17)+(2x+4)=180 | | 180=10y | | Z=18-4i | | 58-4v=2v+4 | | 180=13x+24 | | 3z+4=4z-4 | | 5w+5=4w+10 | | 7+3–3x=15 | | 15-3z=5(z-5) | | 21.4+4y=6y+17 | | 21.4=2y+17 | | 24=3u-3 |